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Abstract

We discuss the isotropic turbulence decay and solve the energy density spectrum
(EDS) equation considering the inertial transfer energy and viscosity terms,
using the Heisenberg parameterization. In the present approach, buoyant
and shear terms are neglected and turbulence is assumed to be homogeneous
and isotropic. The nonlinear integro-differential equation is solved by
Adomian’s generic decomposition method, which yields an analytical recursive
expression and upon truncation gives an approximate solution. We show the
resulting EDS and the time-dependent decay of the intensity of the turbulent
kinetic energy. Our results prove consistent the Heisenberg parameterization
for the transfer term of the inertial energy. The analytical character of
the solution permits a validation of the nonlinear details of the physical
model.

PACS numbers: 44.20.+b, 47.27.nb

1. Introduction

The planetary boundary layer (PBL) is an inherent complex and heterogeneous system, which
is in a permanent transition, due to a variety of external and internal factors. A dominant
external influence is the surface heat flux as a consequence of the incident solar radiation.
Thus one may define two different regimes for the PBL, the convective regime during the day
and the stable one during the night. The first approach for the transition process was introduced
by Deardorff [9, 10] using large eddy simulation (LES), considering experimental data from
the Wangara measurements with the goal to characterize stationary turbulence. Nieuwstadt
and Brost [20] analysed the decay of turbulence in the convective boundary layer (CBL) and

1751-8113/08/425205+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/42/425205
mailto:bardo.bodmann@ufrgs.br
http://stacks.iop.org/JPhysA/41/425205


J. Phys. A: Math. Theor. 41 (2008) 425205 A Goulart et al

taking into account LES data. In their approach the authors used an instantaneous cut for the
heat flux.

Only after a decade this abrupt day–night transition was improved by a gradual heat flux
change with time [25]. Since then a variety of works discussed this issue using LES as for
instance in [7, 13, 22, 23]. In the latter work turbulent shear effects during the decay in the
CBL were included. A next step was done examining humidity effects close to the terrestrial
surface during the day–night transition from experimental data [1, 2]. Numerical investigations
of the decay in the CBL gave rise to several observational projects, see, for instance,
[12, 17, 19]. Acevedo and Fitzjarrald [1, 2] report on the occurrence of specific humidity
during the day–night transition and a temperature drop at the surface accompanied by a sudden
decrease in the wind velocity.

Literature is scarce with respect to theoretical treatments of the transition in the CBL.
Goulart and coworkers [14, 15] proposed a model for the decay of the energy density spectrum
(EDS) in the CBL starting from a spectral energy balance equation, neglecting kinetic energy
production by mechanical effects, which gave comparable results to LES. A remarkable
experimental effort [6] was performed during the eclipse on 11 August 1999, where the
experimental team analysed the EDS decay and found the transition comparable to the changes
from day to night. The analyses of the transition periods from spectral models opens pathways
for approaches using well-established conservation laws, energy conservation in this case. The
efficiency of the model is linked to the significance of the parameter inference of the unknown
terms in the energy conservation equation as well as the quality of the mathematical method
employed to solve the resulting equation.

In the work of Goulart et al [15] the starting point of this study was the balance
equation for the EDS, in which the parameterization of the inertial energy transfer term
was expressed as a superposition of the time variation of the velocity correlation tensor
and the source for convective energy. On the other hand, the buoyancy term in this
equation was represented in a factorized form [24] in which the initial heat flux and the
function controlling its temporal decrease were described separately. Employing these
parameterizations in the equation for EDS, applying the Laplace transform and numerically
inverting the transformed spectrum function, a solution representing the decaying convective
3D spectrum was obtained. However, the complexity originating from the aforementioned
solution method imposes a severe limitation in distinct applications that consider decaying
turbulent properties in CBL. As a shortcoming it is not possible to derive eddy diffusivities
for the decaying turbulence in the CBL. On the other hand, differently to the solution method
proposed by Goulart et al [15] and disregarding the buoyancy term in the equation describing
the evolution of the spectrum function, Goulart et al [14] derived decaying convective
eddy diffusivities. Though, in this approach the inertial energy transfer term has been
parameterized following an idea suggested by Pao [21], which turns a nonlinear turbulent
equation into a linear one. In order to overcome the shortcomings of [14, 15], and explore
especially the nonlinearity, the present study focuses on a new parameterization for the inertial
energy transfer term in the balance equation for the EDS. To this end, the inertial term
is parameterized using Heisenberg’s turbulent spectral transfer theory. As a consequence,
this procedure retains the inherent nonlinear character associated with the turbulence
problem and yields an integro-differential equation that provides an analytical solution to
the decaying 3D energy spectrum. Thus, the major advantage associated with Heisenberg’s
parameterization is due to the fact that the present approach generates a solution avoiding the
usual linearization procedure in the turbulence problem, although its character is intrinsically
nonlinear.
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2. Dynamical energy density spectrum

In order to model the isotropic turbulence decay we solve the EDS equation considering the
inertial transfer energy and viscosity terms. Here we parameterize the inertial transfer energy
by the Heisenberg parameterization. This procedure yields a nonlinear integro-differential
equation. Since the turbulence decay is still poorly understood, we reason that an analytical
solution shall open pathways to understand at least some details of the phenomenon. Hence
we solve this equation by the generic decomposition method proposed by Adomian [3–5],
which solves analytically nonlinear problems by a recursive procedure. Due to its analytical
character of the solution we expect to make progress in the issue of the decay of the energy
spectrum.

In the decaying CBL, to a first approximation, buoyant and shear terms can be disregarded
and turbulence can be assumed to be homogeneous and isotropic. Consequently, the following
three-dimensional EDS equation reads [16, 26]

∂E(k, t)

∂t
= W(k, t) − 2νk2E(k, t), (1)

where t is time, k is the wave number, E(k, t) is the 3D EDS, W(k, t) is the inertial transport
term and ν is the kinematic viscosity.

2.1. Heisenberg parameterization

A turbulent flow contains eddies of different sizes or equivalently different wavelengths. The
small eddies are subject to the stress generated by larger eddies. This field increases the
vorticity of small eddies and, consequently, their kinetic energy. Thus, turbulent kinetic
energy is successively transferred from larger eddies to smaller and smaller eddies until the
Kolmogorov micro-scale is reached, where the energy is dissipated as heat. This process
is represented by the term W(k, t) of equation (1) and was parameterized, according to
Heisenberg, for a turbulent isotropic flow on the basis of dimensional analysis, as follows:

W(k, t) = −2νtk
2E(k, t), (2)

where

νt = CH

∫ ∞

k

√
E(k′, t)

k′3 dk′ (3)

is the eddy viscosity, with CH the Heisenberg constant. Upon substituting equations (2) and
(3) into equation (1), one obtains

∂E(k, t)

∂t
+ 2CHk2E(k, t)

∫ ∞

k

√
E(k′, t)

k′3 dk′ + 2νk2E(k, t) = 0. (4)

Considering the following dimensionless parameters, in which w∗ is the convective velocity
scale, zi is the CBL height and �ε is the nondimensional molecular dissipation rate function,

t∗ = w∗t
zi

Re = w∗zi

ν
�ε = εzi

w3∗
, (5)

equation (4) becomes

∂E(k̃, t∗)
∂t∗

+
2CH

w∗zi

k̃2E(k̃, t∗)
∫ ∞

k̃

√
E(k̃′, t∗)

k̃′3 dk̃′ +
2

Re

k̃2E(k̃, t∗) = 0 (6)

where k̃ = kzi . Using the new definitions allows us to cast equation (6) into a simpler form

∂E(k̃, t∗)
∂t∗

+ k̃2F(E(k̃, t∗)) +
2

Re

k̃2E(k̃, t∗) = 0, (7)
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where

F(E(k̃, t∗)) = 2CH

w∗zi

E(k̃, t∗)
∫ ∞

k̃

√
E(k̃′, t∗)

k̃′3 dk̃′. (8)

2.2. Adomian decomposition

Upon application of the decomposition method [3–5] in equation (7), the method decomposes
the linear term into an infinite sum of components

E(k̃, t∗) =
N∑

n=0

un(k̃, t∗), (9)

and the nonlinear term may be identified by the decomposition series

F(E(k̃, t∗)) =
N∑

n=0

An(E(k̃, t∗)), (10)

where An are the so-called Adomian polynomials. Adomian [3–5] introduced formulae that
can generate polynomials for all forms of nonlinearity. In the following we show the form of
the first three polynomials:

A0 = F(u0)

A1 = u1F
′(u0) (11)

A2 = u2F
′(u0) +

1

2!
u2

1F
′′(u0)

· · · .
It is noteworthy that A0 depends only on u0, A1 depends only on u0 and u1, and A2 depends
on u0, u1 and u2. In order to solve equation (7) with Adomian’s method we substitute (9) and
(10) into (7),

∂

∂t∗

(
N∑

n=0

un(k̃, t∗)

)
+

(
N∑

n=0

An(E(k̃, t∗))

)
k̃2 +

2

Re

k̃2

(
N∑

n=0

un(k̃, t∗)

)
= 0.

(12)

We can write the equation above as a system recursive equations,
∂u0

∂t∗
+

2

Re

k̃2u0 = 0

∂u1

∂t∗
+

2

Re

k̃2u1 = −k̃2A0

∂u2

∂t∗
+

2

Re

k̃2u2 = −k̃2A1.

The general equation for u is
∂un

∂t∗
+

2

Re

k̃2un = −k̃2An−1, (13)

and the analytical solution is given by

un = E0e− 2
Re

k̃2t∗ + e− 2
Re

k̃2t∗
∫ t∗

0
An−1e− 2

Re
k̃2t ′∗ dt ′∗, (14)

where E0 is the initial spectrum of the CBL. For the spectral function given by equation (10)
we will consider n = 3, the same holds for equation (14).

4



J. Phys. A: Math. Theor. 41 (2008) 425205 A Goulart et al

2.3. The energy density spectrum

Here non-isotropic initial turbulence is considered, and consequently, the formulation proposed
by Kristensen and coworkers [18] may be employed to determine the initial 3D spectrum of
the CBL. This formulation allows determining the 3D spectrum of a homogeneous turbulent
flow from a known 1D spectrum,

E0(k, z) = k3 d

dk

1

k

dSu(k)

dk
+ 12AimiB

17
6

i k4
3∑

n=0

Cn

∫ ∞

T1i

X3n−12
i(

X3
i − 1

)5
dXi

− 84

9
AimiB

4
3
i

3∑
n=0

Cn

∫ T2i

1

X3n−12
i(

X3
i − 1

)n−5
dXi (15)

with i = u, v,w and

T1i =
(

1 +
1√
Bis

) 1
3

T2i = (
1 +

√
Bis

) 1
3

Ai = aib
− 5

6
i Bi = b−2

i

mu = 2 mv = mw = 1

C0 = −55

27
C1 = 70

9
C2 = 725

72
C3 = 935

216
.

According to Degrazia and Anfossi [11] the initial 1D spectrum can be written as

Si(k, 0) = ai

(1 + bik)
5
3

, (16)

where

ai = 0.98

2π
ci

(
z

zi

) 5
3

zi�
2
3
ε w2

∗
((

f ∗
m

)c

i

)− 5
3 and bi = 1.5

2π
z

1(
f ∗

m

)c

i

with (see [8])

ci = αi(0.5 ± 0.05)(2πκ)−
2
3 αi = 1,

4

3
,

4

3

and

w∗ = (u∗)0

( zi

κL

) 1
3
,

(
f ∗

m

)c

i
= z

Gizi

, Gu = Gv = 1.5,

Gw = 1.8
(

1 − e− 4z
zi − 0.0003e− 8z

zi

)
.

Equation (16) is an empirical expression that represents the observed one-dimensional
spectra for a stationary CBL. This expression is used to construct the initial condition
(equation (15)) for an isotropic model describing the decaying of the anisotropic turbulence
energy spectrum. The EDS calculated from equations (9), (14)–(16) can be integrated to get
the kinetic total energy, that is

K =
∫ ∞

0
E(k, t) dk. (17)
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Figure 1. Energy density spectrum in the decaying CBL.

3. Results

Figure 1 shows the EDS calculated from equations (9) (with N = 3), (14)–(16). One observes
that the intensity of the turbulent kinetic energy diminishes with time and the maximum of the
distribution moves to smaller wave numbers. This behaviour is expected from the physical
point of view, because small eddies (large wave numbers) decay faster than larger ones, so
that with increasing time eddies with increasingly smaller wave numbers survive, manifest in
the temporal displacement of the maximum in the spectrum.

Figure 2 (solid line) shows the kinetic energy calculated from the model presented
in this work with Heisenberg’s parameterization for the inertial energy transfer term
(equations (17), (9), (14)–(16)). Results obtained using Pao’s parameterization [14] and
from the LES data (compiled from [20]) are included into the figure (dotted line and point set,
respectively). One observes that the turbulent kinetic energy determined by employing the
Heisenberg parameterization from equations (17), (9), (14)–(16) maintains approximately a
constant value until t∗ ≈ 1 comparable to the results from [20], which in turn proves plausible
the proposed parameterization of the energy transfer (equations (2) and (3)). Recalling that
these results are obtained only considering the inertial energy transfer and energy dissipation
through viscosity effects, both decreasing the energy. An inadequate parameterization of the
kinetic energy transfer by inertial effects should manifest itself in the nonlinear contribution
with the result that eddies had a faster decrease in the turbulent kinetic energy, especially in
comparison to the simulation of Nieuwstadt and Brost [20].

Particularly, the results obtained employing the Heisenberg parameterization agree fairly
well with the LES data. Differently, Pao’s parameterization does not reproduces adequately
the results generated from the LES data. This disparity between Heisenberg and Pao
parameterizations can be explained by the fact that the inertial energy transfer is a typically
nonlinear phenomenon and any procedure of linearization to reproduce this term represents
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Figure 2. Temporal evolution of the kinetic energy decay of the CBL.

a crude approximation. In this context the nonlinear equation (4) derived, assuming the
Heisenberg hypothesis is solved in this work without linearization.

4. Conclusion

The present work is, to the best of our knowledge, the first successful approach to derive an
analytical expression for the three-dimensional turbulent kinetic energy spectrum, neglecting
a mechanical energy contribution and considering the turbulence homogeneous and isotropic.
The fact that we have taken into account the nonlinearity and have found a closed form
solution following Adomian’s prescription represents the principal progress in the question
of turbulence in the day–night transition of the CBL. From a formal point of view the new
solution is manifest exact since in principle no approximation is made along its derivation,
except for the truncation of the decomposition series. This reinforces our conclusions from
the comparison of the solution by Adomian’s method to the solution with Pao’s linearized
parameterization. The discrepancy (shown in figure 2) shall be mainly due to the physical
difference by the nonlinear contributions. In this sense, our solution does not only provide
a more adequate description of turbulence decay but further sheds light on the influence of
the linearization in the inertial transport term. Numerical large eddy simulations and our
findings are roughly in agreement, whereas the missing nonlinear effects seem to destabilize
turbulence which leads to a precocious decay, approximately one order of magnitude earlier
than our result or the LES data. Encouraged by the good results we focus our future attention
to the task of application of this methodology to solve the energy spectral equation considering
mechanical and convective turbulent energy.
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